If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40+13x+x^2=108
We move all terms to the left:
40+13x+x^2-(108)=0
We add all the numbers together, and all the variables
x^2+13x-68=0
a = 1; b = 13; c = -68;
Δ = b2-4ac
Δ = 132-4·1·(-68)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-21}{2*1}=\frac{-34}{2} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+21}{2*1}=\frac{8}{2} =4 $
| -4(-1+8x)=100 | | 9=2x–7 | | 3x-8=13+6x | | F(x)=-100x | | 7x-7=8x3 | | 4nn=14 | | P(x)=(3/10) | | 6x-2x+3=4x+7-4 | | P(x)=3/10 | | n2-4=5;n= | | -14=-21+x/11 | | -10=2r-4-3r | | n2-4=5 | | 7(x−7)+8=7x−41 | | 0.02x+0.7=0.8-0.03x= | | 26+3x=3(−x+8)−34 | | -3(m-8)+8m=-101 | | 1-r=0.64 | | 1+r=1.045 | | 20a-40=60 | | 5y–2=3y+6 | | 1z-8=16 | | X=2.y/3+4 | | 2x2–24x–14=0 | | r/7-18=22 | | 4x+2=2-(2x-1) | | (7x+19)+57°=180 | | 4i+5=73 | | 16h-45=941 | | 8m+5=14 | | 8m+5=1 | | 17+7b=31 |